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Abstract

Accurate quantitation of Magnetic Resonance Spectroscopy (MRS) signals is an essential step before converting the estimated

signal parameters, such as frequencies, damping factors, and amplitudes, into biochemical quantities (concentration, pH). Several

subspace-based parameter estimators have been developed for this task, which are efficient and accurate time-domain algorithms.

However, they suffer from a serious drawback: they allow only a limited inclusion of prior knowledge which is important for ac-

curacy and resolution. In this paper, a new method is presented: KNOB-SVD and its improved variant KNOB-TLS. KNOB-SVD is

a recently proposed method, based on the Singular Value Decomposition (SVD), which allows the use of more prior knowledge

about the signal parameters than previously published subspace-based methods. We compare its performance in terms of robustness

and accuracy with the performance of three commonly used methods for signal parameter estimation: HTLS, a subspace-based

method which does not allow any inclusion of prior knowledge, except for the model order; HTLSPK(Dfdeq), a subspace-based

method obtained by incorporating in HTLS the prior information that the frequency differences between doublet components are

known and the damping factors are equal; and AMARES, an interactive maximum likelihood method that allows the inclusion of a

variety of prior knowledge. Extensive simulation and in vivo studies, using 31P as well as proton MRS signals, show that the new

method outperforms HTLS and HTLSPK(Dfdeq) in robustness, accuracy, and resolution, and that it provides parameter estimates

comparable to the AMARES ones.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The success of MRS as a non-invasive medical diag-

nostic tool depends on accurate estimation of the signal
parameters. In particular, it is well known that the signal

amplitudes are proportional to the concentration of the

corresponding molecules in the observed volume and

hence their accurate estimation provides a biochemical

signature. Many time-domain algorithms for parameter

estimation have been developed. On the one hand, in-

teractive methods exist [1,2]. They are optimization-

based methods which directly fit the MRS data to the
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model function by minimizing a certain criterion. They

require a lot of user involvement but allow the inclusion

of a variety of biochemical prior knowledge. Note that

the relations among the resonance frequencies, ampli-
tudes, and damping factors of multiplet components are

usually known and by imposing such relations, the

Cramer–Rao Bounds (CRBs) on the errors of estimated

parameters are reduced [3,4].

On the other hand, so-called blackbox methods exist

[5,6]. They directly estimate the model parameters by

means of robust linear algebra tools such as the QR

decomposition [7] (in which a given matrix A is de-
composed as A ¼ QR where Q is an orthonormal matrix

and R is an upper triangular matrix) and the SVD and

can be fully automated, therefore requiring minimal

user interaction. However, blackbox methods are

mail to: Teresa.Laudadio@esat.kuleuven.ac.be


54 T. Laudadio et al. / Journal of Magnetic Resonance 168 (2004) 53–65
characterized by a serious drawback in that they allow
little inclusion of prior knowledge about the model pa-

rameters. A well-known blackbox method is HSVD [6].

It is a subspace-based parameter estimation method in

which the noisy signal is arranged in a Hankel matrix Y.

By truncating the SVD of the data matrix Y appropri-

ately, a ‘‘signal’’ subspace and a ‘‘noise’’ subspace are

computed and the pole information is extracted from

the ‘‘signal’’ subspace basis. The performance of this
method is improved by making use of the total least-

squares (TLS) technique [8] instead of the least-squares

(LS) technique, in solving the overdetermined set of

equations derived from the signal subspace basis and the

shift-invariant property. This variant is called HTLS [9]

in the MRS literature and it possesses good resolution,

parameter accuracy, and efficiency. However, HTLS

does not use any prior knowledge about parameters in
the data model, whose inclusion is important for further

improvement of estimation accuracy and resolution.

More accurate and efficient subspace-based methods

have been developed by incorporating different types of

prior knowledge (PK) in HTLS:

• HTLSPK(fd): frequencies and damping factors of

some exponentials are known [10];

• HTLSPK(fp): frequencies and phases of some expo-
nentials are known [11];

• HTLSPK(fdp): frequencies, dampings and phases of

some exponentials are known [11];

• HTLSPK(p): phases of some exponentials are known

[11];

• HTLSPK(Dfdeq): the frequency differences between

doublet components are known and the damping

factors are equal [12,13].
In this paper, we present a new subspace-based meth-

od, called Knowledge Based Total Least Squares

(KNOB-TLS), which is an improved variant of Knowl-

edge Based Singular Value Decomposition (KNOB-

SVD). KNOB-SVD was recently proposed in [14] and it

allows the inclusion of significantlymore prior knowledge

in MRS data quantitation than the above mentioned

methods. More precisely, we assume that the function
used tomodel themeasured data points of anMRS signal

is the sum of K exponentially damped complex sinusoids

yn ¼
XK
k¼1

akej/kknk þ �n; n ¼ 0; . . . ;N � 1; ð1:1Þ

where the number of components K is assumed to be

known, kk ¼ eð�dkþj2pfkÞDt represent the signal poles,

(ak;/k; dk; fk) are the amplitude, phase, damping and

frequency of the kth component, Dt is the data sampling

period, and �n is the noise term.

Our goal is to estimate the parameters (ak;/k; dk; fk)
from N given data samples fyngN�1

n¼0 . As prior knowledge,

we assume that the amplitudes ak, phases /k, damping

factors dk, and frequencies fk of the components within

multiplets satisfy the following relations:
ak ¼ cka ða ¼ unknown; ck ¼ known real constantsÞ;
/k ¼ / ð/ ¼ unknownÞ;
dk ¼ d ðd ¼ unknownÞ;
fk ¼ f þ ðk � 1ÞDf ðf ¼ unknown; Df ¼ knownÞ;

ð1:2Þ

where k denotes the peak number in the considered

multiplet components (e.g., doublet or triplet peaks) and

Df represents the frequency difference between the in-
dividual resonances within the considered multiplet.

In particular, the adenosine triphosphate complex,

commonly called ATP, which has one triplet peak and

two doublet peaks the parameters of which may in some

cases be known to satisfy the above type of relations,

will be considered as an example for the simulation and

in vivo studies. The performance of KNOB-TLS will be

compared, in terms of robustness and accuracy, with the
subspace-based methods HTLS and HTLSPK(Dfdeq),
and with the interactive maximum-likelihood method

AMARES [15]. A comparison in terms of computa-

tional efficiency is also carried out for the three afore-

mentioned subspace-based methods. Our studies show

that the proposed method performs much better than

HTLS and HTLSPK (Dfdeq) and provides parameter

estimates comparable to the AMARES ones, but it is
not able to outperform the interactive method in ro-

bustness and accuracy. However, AMARES is an opti-

mization-based method which requires good initial

parameter estimates to converge properly. Usually, the

procedure used to obtain good starting values is the so-

called ‘‘peak picking’’ procedure that involves a lot of

interaction with the user. In this context, KNOB-TLS

can be used to provide good starting values to
AMARES, therefore decreasing the need for human

interaction.

The paper is organized as follows. In Section 2 an

outline of the KNOB-TLS algorithm is provided. In

Section 3 the simulation studies are described and the

performances of the four methods are compared in

terms of robustness and accuracy. In Section 4 in vivo

studies, using 31P as well as proton MRS signals, are
described and the performances of KNOB-TLS,

HTLSPK(Dfdeq), HTLS, and AMARES are compared

in terms of accuracy. In Section 5 we formulate the main

conclusions and, finally, in Appendix A the method

KNOB-SVD/TLS is described.
2. KNOB-TLS algorithm for multiplet parameter esti-

mation

We consider MRS signals characterized by one or

more doublets and triplets. Without loss of generality,

we focus on MRS signals with contribution from ATP,

consisting of K components with KP 7 , and containing
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one triplet and two doublets. The dampings and
frequencies of the triplet peak satisfy the following

relations:

d1 ¼ d2 ¼ d3 ¼ dt;

f2 ¼ f1 þ Df ; f3 ¼ f1 þ 2Df ;
ð2:3Þ

the dampings and frequencies of the doublet peaks satisfy:

d4 ¼ d5 ¼ dd1; f5 ¼ f4 þ Df ;

d6 ¼ d7 ¼ dd2; f7 ¼ f6 þ Df :
ð2:4Þ

Finally, the amplitudes and phases of the triplet and

doublet peaks satisfy:

2a1 ¼ a2 ¼ 2a3 ¼ a4 ¼ a5 ¼ a6 ¼ a7 ¼ a;

/1 ¼ /2 ¼ /3 ¼ /4 ¼ /5 ¼ /6 ¼ /7 ¼ /;
ð2:5Þ

with dt (damping for the triplet peak), dd1 (damping for

the first doublet peak), dd2 (damping for the second

doublet peak), a and / unknown, and Df known. We

also assume, as prior knowledge, that the approximate

frequency locations of the ATP peaks are known.

The KNOB-SVD/TLS method is briefly described in
Appendix A. Here we summarize the computations re-

quired by KNOB-TLS.
2.1. Outline of the KNOB-TLS algorithm

• Step 1. Damping and frequency estimation of all

peaks

� Compute K defined in (A.4) using the HTLS
method.

� Extract K2 and K3 from the signal pole estimates in

K.
• Step 2. Removal of nuisance peaks prior to triplet

peak estimation

� Use the estimates f�k1; . . . ; �k�mg ¼ K3, obtained in

Step 1, to compute the QR decomposition in

(A.7) and hence obtain �Q.
� Compute the M � ðL� �mÞ matrix �Y, as in (A.9),

from which the components outside the triplet re-

gion have been eliminated.

• Step 3. Damping and frequency estimation of the

triplet peak

� Compute the matrix �U consisting of the

maxfK � �m; 3g left singular vectors of �Y associ-

ated with the largest singular values.
� Compute �C defined in (A.14) and its eigenvector w

associated with the smallest eigenvalue.

� Solve Eq. (A.21) in a TLS sense to obtain k1. Use

the estimate of k1 along with (2.3) to estimate

k2 ¼ k1ej2pDfDt and k3 ¼ k1ej4pDfDt.
• Step 4. Removal of nuisance peaks prior to doublet

peak estimation

� Use the estimates f�k1; . . . ; �k�mg ¼ K2, obtained in
Step 1, to compute a QR decomposition similar

to (A.7) and hence obtain �Q.
� Compute the M � ðL� �mÞ matrix �Y from which
the components outside the doublet regions have

been eliminated.

• Step 5. Damping and frequency estimation of the

doublet peaks

� Compute the matrix �U consisting of the

maxfK � �m; 4g left singular vectors of �Y associ-

ated with the largest singular values.

� Compute �C defined in (A.26) and its eigenvectors
w1;w2 associated with the two smallest eigen-

values.

� Solve Eq. (A.32) in a TLS sense to obtain the 2� 2

matrix W and take its two eigenvalues as estimates

of k4 and k6. Use the estimates of k4 and k6 along
with (2.4) to estimate k5 ¼ k4ej2pDfDt and

k7 ¼ k6ej2pDfDt.
• Step 6. Elimination of the estimated multiplet peaks

� Use the estimates of fkkg7k¼1, obtained in Steps 3

and 5, to compute a QR decomposition as in

(A.7) and, hence, to compute the M � ðL� 7Þ ma-

trix YK�7 from which the ATP peak components

have been eliminated.

• Step 7. Damping and frequency estimation of the re-

maining K � 7 peaks

� Similarly to Step 1, apply the HTLS method to the
K � 7 dominant left singular vectors of the data

matrix YK�7 to re-estimate fkkgKk¼8.

• Step 8. Amplitude estimation

� Use the amplitude and phase constraints (2.5) into

the model equation to obtain the system of linear

equations AH ¼ y, as defined in (A.37), where y

represents the data vector.

� Compute the least-squares solution of the system
AH ¼ y in order to obtain the amplitude and

phase estimates.

Remark. This algorithm can be easily adapted for

quantitation of other signals with multiplet structure by

combining, modifying and deleting the above steps in an

appropriate way. For example, quantitation of a proton

MRS signal exhibiting a lactate doublet involves the

execution of Steps 1, 4 (restricted to one doublet), 5, 6,
and 7 with proper specification of the amplitude and

phase constraints.
3. Quantitation of a simulated MRS signal

We consider a simulated signal derived from an in

vivo 31P spectrum measured in the human brain and
consisting of 256 complex data points and 11 exponen-

tials, as defined in [15]. In Table 1 the parameters of the

noiseless simulated signal are displayed and Fig. 1 shows

the real part of the Discrete Fourier Transform (DFT)

of the simulated signal when it is perturbed by additive

complex white noise with a circular Gaussian distribu-

tion with standard deviation r ¼ 15. The first seven



Table 1

True parameter values of the simulated 31P MRS signal

Peak k fk (Hz) fk (ppm) dk (Hz) ak (a.u.) /k (�)

1 )86 )17.2 50 75 135

2 )70 )16.6 50 150 135

3 )54 )16.0 50 75 135

4 152 )8.0 50 150 135

5 168 )7.4 50 150 135

6 292 )2.6 50 150 135

7 308 )2.0 50 150 135

8 360 0.0 25 150 135

9 440 3.1 285.7 1400 135

10 490 5.0 25 60 135

11 530 6.6 200 500 135
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peaks (denoted by b-ATP, a-ATP, and c-ATP, respec-

tively, in Fig. 1) represent the adenosine triphosphate

(ATP) complex. We note that the ATP complex con-

tains one triplet peak, b-ATP, and two doublet peaks,

a-ATP and c-ATP, which clearly satisfy the aforemen-

tioned properties (2.3)–(2.5). The b-ATP peak was

approximated as a triplet in our in vivo examples. For

highly resolved signals of tissues with known differences
in the ATP phosphorus a–b and c–b coupling constants,

the b-ATP peak should be treated as a doublet of a

doublet with the appropriate prior knowledge concern-

ing the coupling constants, insofar available. The sam-

pling frequency is fs ¼ 3 kHz and the frequency

separation of the ATP peaks is Df ¼ 16Hz. In this

section we compare the performances of the subspace-

based methods KNOB-TLS, HTLS, HTLSPK(Dfdeq)
and the optimization-based method AMARES when

considering the full 31P signal, whose first seven peaks,

i.e., the ATP complex, satisfy the prior knowledge
Fig. 1. Real part of the spectrum of the simulated 31P MRS signal,

obtained for r ¼ 15.
specified by the relations (2.3)–(2.5). Before describing
the simulation studies, we would like to remind the

reader that the method AMARES is initialized by using

the ‘‘peak picking’’ technique, as already pointed out in

Section 1. Moreover, it is important to note that the

method HTLSPK(Dfdeq) can only exploit the type of

prior knowledge considered in (1.2) for the doublet

peaks, but not for triplet peaks. However, the method

can be applied to the given signal by modeling the ATP
triplet peak as two doublet peaks sharing the center

peak. In the following, the method HTLSPK(DfdeqÞ will
be denoted by HTLSPK to simplify the notation.

We consider Eq. (1.1) with ak, /k, dk, and fk,
k ¼ 1; . . . ; 11, as given in Table 1, and perturb the signal

by adding white Gaussian noise with standard deviation

r on the real and the imaginary components separately.

Our goal is to recover the parameters ak, /k, dk, and fk,
k ¼ 1; . . . ; 11, characterizing the signal fyngN�1

n¼0 , and

compare the performances of KNOB-TLS, HTLS,

HTLSPK, and AMARES in terms of robustness and

statistical accuracy. The robustness of each method is

evaluated by computing its success rate, i.e., the number

of times, out of the total number of simulation runs, the

method is able to resolve the 11 peaks within specific

intervals lying symmetrically around the true frequen-
cies of the peaks. The halfwidths of these intervals are

set to 8Hz, i.e., half the separation of the closest peaks

in the data. Concerning the statistical accuracy, this is

measured as the mean Relative Root Mean Squared

Error (mean RRMSE)

mean RRMSE � 100

K

XK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

ðp̂k;j � pkÞ2

p2k

vuut ð%Þ

ð3:6Þ
for the amplitude and damping estimates, and as the

mean Root Mean Squared Error (mean RMSE)

mean RMSE � 1

K

XK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

ðp̂k;j � pkÞ2
vuut ð3:7Þ

for the frequency and phase estimates, where K is the

total number of peaks (K ¼ 11), J is the number of

simulation runs in which the method was able to find

every peak within the corresponding frequency inter-

val, p̂k;j denotes the parameter estimate of the kth peak

obtained in simulation run j, and pk denotes the true

parameter value of the kth peak. We only take into

account the results related to those cases for which we
have a success rate of at least 5% (i.e., J P 50 when

performing 1000 simulation runs), in order to prevent

showing mean RRMSE and mean RMSE values

which are based on too few estimates. In Fig. 2 the

success rate and the amplitude mean RRMSE values

for the ATP complex for different noise levels are

displayed.



Fig. 2. Left: success rate as a function of the noise standard deviation r for the 31P signal. Right: mean RRMSE of amplitude estimates as a function

of the noise standard deviation r for the ATP complex.
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We can observe that the method KNOB-TLS is much
more robust than the other two subspace-based methods

HTLS and HTLSPK, and it also provides amplitude

estimates whose quality is much better than that of the

HTLS estimates. Note that HTLSPK seems better than

KNOB-TLS in accuracy, but this is due to the fact that

only the successful runs (much fewer for HTLSPK) have

been considered in the plot. Moreover, we can also

observe that KNOB-TLS is not able to outperform the
optimization-based method AMARES, whose success

rate is the highest and whose mean RRMSEs more

closely approach the CRBs, which represent the best

possible accuracy that an unbiased estimator can

achieve. In Figs. 3 and 4 the mean RMSE values for the

frequency estimates, the mean RRMSE values for

damping factor estimates, and the mean RMSE values

for phase estimates are shown.
Fig. 3. Left: mean RMSE of frequency estimates as a function of the noise

damping factor estimates as a function of the noise standard deviation r for
From Fig. 3 (left) we can notice that the frequency
estimates are characterized by low mean RMSE values

for all considered methods and that, in particular,

KNOB-TLS is more accurate than HTLSPK and

HTLS. Similar results can be observed for phases in

Fig. 4, where we can also notice that the performance of

the HTLS method gets even worse. Finally, in

Fig. 3(right) we can see that KNOB-TLS and HTLSPK

damping factor estimates are characterized by large
variances (high mean RRMSEs) compared to

AMARES, which points out a loss of accuracy for both

methods when estimating the damping factors.

Concerning the computational efficiency, the average

number of flops over 1000 simulation runs for the con-

sidered blackbox methods was computed for different

lengths of the signal, as given by the number of data

points N . The noise standard deviation was set to
standard deviation r for the ATP complex. Right: mean RRMSE of

the ATP complex.



Fig. 4. Mean RMSE of phase estimates as a function of the noise

standard deviation r for the ATP complex.
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r ¼ 15. The method AMARES has not been taken into
account in the present comparison since the available

code is written in Fortran, which does not allow the

count of the number of flops. In Table 2 the ratio be-

tween the average number of flops of the two methods

KNOB-TLS, HTLSPK, and the average number of

flops of HTLS is reported. We observe that KNOB-TLS

is about 1.5 times computationally more intensive than
Table 2

Ratio between the average number of flops over 1000 simulation runs

for different lengths of the signal

N ðKNOB-TLSÞ=HTLS HTLSPK=HTLS

256 9.3651 6.6832

1024 9.7731 6.8342

2048 9.7852 6.8491

Fig. 5. Mean RRMSE of amplitude estimates (left) and damping estimates (rig

function of the noise standard deviation r for the ATP complex.
HTLSPK and that for all methods the ratio slightly
increases with the length of the signal N . The efficiency

of KNOB-TLS can be improved by using the Lanczos

algorithm with partial reorthogonalization or the im-

plicitly restarted Lanczos algorithm [17] in order to

compute the truncated SVDs, which represent the

computationally most intensive part of the algorithm.

We would like to conclude this section by describing

the performance improvements which one can expect by
using theTLS-based variantKNOB-TLSof the originally

proposed method KNOB-SVD. We remind the reader

that the difference between the two versions consists of

computing the total-least squares solutions of Eq. (A.21)

and (A.32) instead of the least-squares solutions. In Fig. 5

the amplitude (left) and damping (right) mean RRMSE

values for the proposed method are reported when con-

sidering the two different variants: KNOB-SVD and
KNOB-TLS. We can observe that the TLS variant pro-

vides amplitude and damping factor estimates whose

quality is slightly better than that of the LS variant.
4. Quantitation of in vivo MRS signals

4.1. In vivo 31P signals

As a first example of quantitation of in vivo MRS

signals, we consider 21 31P signals, which are free-in-

duction decay signals acquired after a single pulse (64

averages), obtained from the resting calf muscle of

healthy humans and recorded at 81.1MHz (4.7 T Bruker

Biospec) using a 5 cm diameter surface coil positioned

against the calf muscle. Each signal consists of 2048
complex data points in the time domain and is assumed

to be modeled by Eq. (1.1) with model order K ¼ 9. The

sampling time is 0.25ms and only 512 data samples are
ht) as computed by KNOB-SVD and its TLS variant KNOB-TLS, as a
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considered (the remaining ones contain only noise),
starting from the 5th point of the signal (the first 4 data

samples are excluded in order to eliminate the hump

characterizing the original spectra). The same data

samples are used in the KNOB-TLS, HTLSPK, HTLS,

and AMARES estimation algorithms for the quantita-

tion of the given signals. The method AMARES is ini-

tialized by using the ‘‘peak picking’’ technique applied

to one of the available signals. The prior knowledge
about amplitudes and phases we assume in this section

slightly differs from (2.5) since the signals also contain

the adenosine diphosphate complex, commonly called

ADP, which distorts the original ATP signal. More

precisely, we consider as prior knowledge for the b-ATP

triplet peak

2a1 ¼ a2 ¼ 2a3; /1 ¼ /2 ¼ /3 ð4:8Þ
for the first a-ATP doublet peak

a4 ¼ a5; /4 ¼ /5; ð4:9Þ
and for the second c-ATP doublet peak

a6 ¼ a7; /6 ¼ /7: ð4:10Þ
Regarding the prior knowledge in (2.4) and (2.5), here Df
is equal to 16Hz. The approximate frequency locations

for all ATP peaks are known as well: b-ATP ()1129Hz,

)16.2 ppm;)1113Hz,)16.0 ppm;)1097Hz,)15.8 ppm),

a-ATP ()426Hz, )7.6 ppm; )410Hz, )7.4 ppm), and c-
ATP ()20Hz, )2.6 ppm; )4Hz, )2.4 ppm). In order to

compare the performances of variousmethods in terms of

accuracy, we need the true parameter values which, un-

fortunately, are not known in practical applications.
However, we can consider as accurate estimates of the

true parameters those determined by AMARES. Our

studies show that the parameter estimates provided by the
Fig. 6. Real part of the original 31P signal spectrum (bottom); (middle) real p

and KNOB-TLS (right); (top) real part of the residual signal spectrum after
method KNOB-TLS are the closest to the AMARES
estimates. More precisely, the method KNOB-TLS is

always able to resolve correctly the first 8 peaks (b-ATP,

a-ATP, c-ATP, and PCr), but not always the 9th one (Pi),

the reason being that the Pi peak was almost inexistent in

some of the spectra, while prominent in others, reflecting

the biological variation of the concentration of muscle Pi

in individuals. The methods HTLSPK and HTLS are not

able to provide acceptable estimates, that is their fre-
quency estimates donot fall within the frequency intervals

lying symmetrically around the AMARES estimates and

with halfwidths equal to 8Hz. The method HTLSPK is

sometimes able to resolve the a-ATP and c-ATP doublets

and the PCr peak, but never the b-ATP triplet and the Pi

peak; HTLS never resolves the triplet and doublets. Fig. 6

shows results of quantifying one of the available 31PMRS

signals by AMARES and KNOB-TLS. In Table 3 the
mean Relative Root Mean Square Difference values

(mean RRMSD) for the amplitude and the damping pa-

rameter estimates, and the mean Root Mean Square

Difference (mean RMSD) values for the frequency and

phase parameter estimates are reported. They are ob-

tained for the ATP triplet and doublets by processing the

available 21 signals. The formulas used to compute the

mean RRMSDs and the mean RMSDs are respectively:

mean RRMSD � 100

K

XK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

ðp̂k;j � pk;jÞ2

p2k;j

vuut ð%Þ

ð4:11Þ
and

mean RMSD � 1

K

XK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

ðp̂k;j � pk;jÞ2
vuut ; ð4:12Þ
art of the spectra of the individual peaks estimated by AMARES (left)

estimation with AMARES (left) and KNOB-TLS (right).



Table 3

Mean RMSD (RRMSD) values and minimum and maximum difference (relative difference) values of the frequency and phase (amplitude and

damping) estimates for in vivo 31P MRS signals measured from the calf muscle of healthy humans

Peak Method fk mean RMSD [m,M] dk mean RRMSD [m,M] (%) ak mean RRMSD [m,M] (%) /k mean RMSD [m,M]

b-ATP KNOB-TLS 0.64 [0.03,1.45] 33.91 [20.49,50.73] 16.52 [9.13,23.07] 1.23 [0.09,2.67]

HTLSPK 323.66 [5.65,393.28] 23.94 [8.23,34.11] 72.81 [8.57,99.26] 126.69 [8.88,169.75]

HTLS 529.61 [0.07,1085.31] 60.46 [3.14,111.98] 213.51 [87.62,460.38] 66.08 [0.02,207.52]

a-ATP KNOB-TLS 0.75 [0.02,1.55] 15.58 [8.10,27.13] 8.68 [2.33,13.49] 2.34 [0.02,4.66]

HTLSPK 346.85 [6.81,424.20] 12.73 [2.24,30.36] 19.47 [0.33,50.09] 15.87 [0.38,39.90]

HTLS 307.15 [6.52,612.93] 36.59 [0.13,101.09] 185.51 [10.24,555.47] 39.72 [0.11,210.73]

c-ATP KNOB-TLS 2.48 [0.12,6.05] 51.38 [5.01,91.78] 27.98 [3.52,54.47] 5.93 [0.19,12.60]

HTLSPK 908.64 [2.80,1710.04] 449.61 [15.60,1892.90] 118.74 [23.20,413.71] 97.32 [5.20,231.77]

HTLS 278.85 [179.38,590.50] 55.42 [2.01,103.32] 344.52 [6.42,799.84] 41.12 [0.11,163.09]
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where K is the number of peaks, J is the total number of

processed in vivo signals (J ¼ 21), p̂k;j denotes the pa-

rameter estimate of the kth peak obtained when pro-

cessing the jth signal by one of the blackbox methods,

and pk;j denotes the AMARES parameter estimate of the

kth peak for the jth signal. The table also reports the

minimum (m) and maximum (M) relative difference
values (for the amplitude and the damping estimates)

and the minimum (m) and maximum (M) difference

values (for the frequency and phase estimates) for each

method. It is observed that KNOB-TLS is much more

accurate than HTLSPK and HTLS: its mean RRMSD

and mean RMSD values are generally the smallest.

4.2. In vivo proton signals

As a second example of quantitation of in vivo MRS

signals, we consider a long echo-time proton signal from a

7.5 cm3 volume in the white matter of the brain of a 3.5

years old child with leukodystrophy, acquired at

63.6MHz on a 1.5 T Siemens Sonata scanner using the

STEAM sequence (TR/TE/TM¼ 2000/135/30ms) and

CHESS water suppression. The data consist of 1024
complex points in the time domain and the sampling time

is 1ms.Only 512 data points are considered in the analysis

(the remaining ones contain only noise) starting from the

2nd one (the first one is excluded to eliminate the hump

characterizing the original spectrum). The signal is char-

acterized by the presence of the following compounds:

inverted lactate doublet (Lac),N-acetyl aspartate (NAA),

creatine (Cr), choline (Cho), and the water resonance
whose magnitude, as is well-known, is much larger than

themagnitude of themetabolites of interest. The available

prior knowledge is related to the lactate doublet with Df
known and equal to 7Hz. The approximate frequency

locations for all peaks of interest are known as well: Lac

()215Hz, 1.3 ppm; )208Hz, 1.4 ppm), NAA ()169Hz,

2.1 ppm), Cr ()104Hz, 3.1 ppm), and Cho ()92Hz,

3.3 ppm). The choice of the model order K, which char-
acterizes Eq. (1.1), represents an important step since we

have to take into account the contribution of the residual

water signal: a too small value of K could result in infor-
mation loss, while a too large value could incorporate too

much noise and generate spurious spectral features. Sev-

eral criteria, which estimate the model order when un-

known, are available in the literature. We chose to apply

the minimum description length (MDL) criterion [18,19],

which estimates the best model order by minimizing a

discrete function of the singular values of the Hankel
matrix (A.1). We obtained the value K ¼ 7, which means

that the residual water resonance is modeled by two ex-

ponentially damped complex sinusoids. In Table 4 the

parameter estimates obtained when processing the signal

by AMARES (after water removal by HSVD) and the

three blackbox methods are displayed. Notice that the

methods KNOB-TLS and HTLSPK provide estimates

which are very close to the AMARES ones. However,
KNOB-TLS is more accurate than HTLSPK. In the

present case, also HTLS seems to provide acceptable

parameter estimates, but it is important to note that the

imposed prior knowledge concerning the lactate doublet

is not satisfied, especially for the damping factor, ampli-

tude, and phase estimates. Fig. 7 shows the results of the

quantitation of the protonMRS signal forAMARESand

KNOB-TLS. Similar results are obtained when quanti-
fying other in vivo proton MRS signals.
5. Conclusions

In this paper a new subspace-based parameter esti-

mation method, called KNOB-SVD, and its TLS variant

KNOB-TLS have been described. They are able to exploit
biochemical prior knowledge, which is often available

when considering MRS signals and whose use is impor-

tant for accuracy and resolution. The performance of the

proposed method has been compared, in terms of ro-

bustness and accuracy, to that of three well known esti-

mation methods: the interactive method AMARES and

the two blackbox methods HTLS and HTLSPK(Dfdeq).
Our extensive simulation and in vivo studies show that, in
general, the inclusion of prior knowledge in estimation

algorithms improves both robustness and accuracy of the

parameter estimates. Indeed, the methods KNOB-SVD/



Fig. 7. Real part of the original proton signal spectrum (bottom); (middle) real part of the spectra of the individual peaks estimated by AMARES

(left) and KNOB-TLS (right); (top) real part of the residual signal spectrum after estimation with AMARES (left) and KNOB-TLS (right).

Table 4

Parameter estimates and their CRBs for an in vivo proton MRS signal measured from the human brain

Peak Method fk (Hz) dk (Hz) ak (a.u.) /k (�)

1 AMARES )215.22� 0.08 4.97� 0.52 13.90� 0.96 55.07� 0.07

Lac ()215Hz) KNOB-TLS )214.97� 0.08 4.87� 0.52 13.62� 0.96 65.77� 0.07

HTLSPK )215.02� 0.10 6.32� 0.63 15.31� 1.03 63.29� 0.07

HTLS )215.04� 0.08 2.94� 0.52 8.71� 1.03 57.71� 0.06

2 AMARES )208.22� 0.08 4.97� 0.52 13.90� 0.96 55.07� 0.07

Lac ()208Hz) KNOB-TLS )207.97� 0.08 4.87� 0.52 13.62� 0.96 65.77� 0.07

HTLSPK )208.02� 0.10 6.32� 0.63 15.31� 1.03 63.29� 0.07

HTLS )208.07� 0.08 6.38� 0.52 18.53� 1.03 73.59� 0.06

3 AMARES )168.09� 0.16 7.80� 1.01 19.40� 1.80 )124.93� 0.09

NAA KNOB-TLS )168.36� 0.16 7.75� 1.01 19.12� 1.79 )137.65� 0.09

HTLSPK )168.34� 0.16 7.66� 1.01 18.92� 1.78 )136.63� 0.09

HTLS )168.34� 0.16 7.58� 0.99 18.84� 1.77 )137.37� 0.09

4 AMARES )103.62� 0.19 8.91� 1.19 21.02� 2.15 )124.93� 0.10

Cr KNOB-TLS )103.13� 0.18 8.65� 1.15 20.93� 2.13 )108.78� 0.10

HTLSPK )103.13� 0.18 8.58� 1.15 20.75� 2.12 )108.57� 0.10

HTLS )103.13� 0.18 8.50� 1.14 20.71� 2.11 )108.83� 0.10

5 AMARES )92.00� 0.10 9.35� 0.61 44.09� 2.20 )124.93� 0.05

Cho KNOB-TLS )92.02� 0.10 9.52� 0.61 45.79� 2.24 )126.79� 0.05

HTLSPK )92.02� 0.10 9.49� 0.61 45.67� 2.24 )126.59� 0.05

HTLS )92.01� 0.10 9.48� 0.60 45.69� 2.23 )126.62� 0.05
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TLS, HTLSPK(Dfdeq), and AMARES outperform the

method HTLS which does not allow the inclusion of any

prior knowledge. Moreover, KNOB-SVD/TLS is able to
outperform the method HTLSPK(Dfdeq), especially in

terms of robustness, and to provide parameter estimates

which are comparable to theAMARES ones. However, it

is not able to outperform the interactive method

AMARES, which is the most robust and accurate

method.

Since AMARES is an optimization-based method

which requires good initial parameter estimates to con-
verge properly, the proposed method KNOB-SVD/TLS

can be used to provide good starting values to the in-

teractive AMARES method, hence decreasing the need
for human interaction.
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Appendix A. The KNOB-SVD/TLS algorithm

The algorithm KNOB-SVD has been described in [14]

but is repeated here for clarity of exposition.

As already indicated in Section 2, we consider MRS

signals characterized by one or more doublets and

triplets. Without loss of generality, we focus on MRS
signals with contribution from ATP, consisting of K
components with KP 7, and containing one triplet and

two doublets. We assume as prior knowledge the rela-

tions (2.3)–(2.5). The KNOB-SVD/TLS method is de-

scribed in the following steps:

• Step 1. Damping and frequency estimation of all

peaks

Let Y denote the Hankel data matrix commonly used
in SVD-based parameter estimation methods

Y ¼
y0 y1 � � � yN�M

..

. ..
. ..

. ..
.

yM�1 yM � � � yN�1

2
64

3
75; ðA:1Þ

whereM is a user parameter usually chosen less than but

close to N=2 in order to get the best possible parameter

estimation accuracy [10,12,16]. We suggest the value

M ¼ 2N=5.
For a noiseless signal, i.e., �n ¼ 0 in (1.1), the matrix

Y can be written as:

Y ¼ aMðk1Þ . . . aMðkKÞ½ �; ðA:2Þ

a1ej/1 0

. .
.

0 aKej/K

2
64

3
75

aTLðk1Þ
..
.

aTL ðkKÞ

2
64

3
75;

where L ¼ N �M þ 1 and for P ¼ M ; L or N

aP ðkÞ ¼ 1 k � � � kP�1
h iT

: ðA:3Þ

We apply a standard subspace-based method, like

HSVD/HTLS, to the K dominant left singular vectors
of the data matrix Y to compute the set of signal
poles

K ¼ fk1; . . . ; kKg ðA:4Þ

related to the K signal components. Since we know the

approximate frequency locations for the triplet and the

two doublets, we can identify which ones of the esti-

mated signal poles correspond to the triplet peak and

which ones to the doublet peaks. Then, we can define the

following subsets of K:

K2 ¼ K� fthe doublet peaks fkkgg; ðA:5Þ

K3 ¼ K� fthe triplet peak fkkgg; ðA:6Þ

where the set K2 contains the kk estimates with fre-

quencies not close to any of the considered doublet
peaks and K3 contains the kk estimates with frequencies

not close to the triplet peak.

• Step 2. Removal of nuisance peaks prior to triplet

peak estimation

Before estimating the triplet peak parameters, we

have to eliminate the components corresponding to

other peaks from the data which may disturb the triplet

peak estimation. Actually, this might be unnecessary for
low noise levels provided there are no other triplet peaks

in the data satisfying (2.3). However, for higher noise

levels, large peaks in the data may disturb the triplet

peak estimation and, therefore, we first eliminate the

non-triplet components in K3 from the data matrix by

using the technique described in [10]. Specifically, we

assume that K3 contains �m elements, i.e.,

K3 ¼ f�k1; . . . ; �k�mg, and consider the QR decomposition
of the following matrix:

aLð�k1Þ � � � aLð�k�mÞ
� �

¼ �X �Q
h i �R

0

� �
; ðA:7Þ

where �X, �Q, and �R have dimensions L� �m, L� ðL� �mÞ,
�m� �m respectively, �Q� �Q ¼ IL��m and � denotes the con-
jugate transpose.

As �Q� �X ¼ 0 by definition, we have

�Q�aLðkÞ ¼ 0 for k ¼ �k1; . . . ; �k�m; ðA:8Þ
which implies that

�Y,Y �Q�T ¼ aMð�k1Þ . . . aMð�kK��mÞ
� �

; ðA:9Þ

�a1ej
�/1 0

. .
.

0 �aK��me
j�/K��m

2
64

3
75

aTLð�k1Þ �Q
�T

..

.

aTL ð�kK��mÞ �Q�T

2
64

3
75;

where f�k1; . . . ; �kK��mg ¼ K� K3. The matrix �Y no longer

contains the components in K3, i.e., �Y only contains the

components corresponding to the triplet peak and,

possibly, other peaks that are very close to the triplet
peak.
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• Step 3. Damping and frequency estimation of the
triplet peak

We compute the SVD of the matrix �Y

�Y ¼ �U�R�V�; ðA:10Þ

where �R ¼ diagð�r1; � � � ; �rK��mÞ, �U� �U ¼ IK��m, and
�V� �V ¼ IK��m. We define the orthogonal projection matrix

onto the nullspace of �U�

�P ¼ I� �U�U�: ðA:11Þ
It is well known that the vectors faMð�kkÞgK��m

k¼1 span the

range space of �U (see e.g. [16]) and hence

XK��m

k¼1

a�Mð�kkÞ �PaMð�kkÞ ¼ 0: ðA:12Þ

Since for the noise-free case fk1; k2; k3g 	 f�k1; . . . ;�kK��mg,
where fk1; k2; k3g are the signal poles associated with the

triplet peak, we have

X3

k¼1

a�MðkkÞ �PaMðkkÞ ¼ 0: ðA:13Þ

Let

�C ¼ �PþD �PD� þD2 �PD�2; ðA:14Þ
where D is defined as follows:

D ¼ diag 1; e�j2pDfDt; . . . ; e�jðM�1Þ2pDfDt
� �

: ðA:15Þ

As

aMðk2Þ ¼ D�aMðk1Þ; aMðk3Þ ¼ D�2aMðk1Þ;
it follows from (A.13) that

aMðk1Þ 2 nullspaceð�CÞ; ðA:16Þ
and it can be shown that

dim½nullspaceð�CÞ� ¼ 1: ðA:17Þ
Let w denote the M � 1 vector which spans the null

space of �C. In view of (A.16) and (A.17), we have that

aMðk1Þ ¼ qw ðA:18Þ
for some scalar q 6¼ 0. We define the following sub-

vectors of aMðkÞ
auðkÞ ¼ ½ IM�1 0 �aMðkÞ; ðA:19Þ

alðkÞ ¼ ½ 0 IM�1 �aMðkÞ; ðA:20Þ

and similarly for w. As alðkÞ ¼ kauðkÞ; we derive from

(A.18) that

qwl ¼ k1qwu () wl ¼ k1wu ðA:21Þ
and hence k1 can be obtained as

k1 ¼
w�

uwl

w�
uwu

: ðA:22Þ

For noisy data, we compute the matrix �U made from the

maxfK � �m; 3g left singular vectors of �Y associated with
the largest singular values. The vector w is the eigen-
vector of the matrix �C associated with the smallest ei-

genvalue. We use the estimate k1 along with Eq. (2.3) to

estimate k2 ¼ k1ej2pDfDt and k3 ¼ k1ej4pDfDt.
Note that the above value k1 was computed as the

least-squares solution of Eq. (A.21). It is possible to

solve Eq. (A.21) in the total least-squares sense [8],

which results in more accurate final parameter estimates.

For clarity of exposition, we show here how to compute
k1 as the TLS solution of Eq. (A.21):

� arrange the vectors wl and wu in matrix form:

½wu;wl�;
� compute the SVD of the matrix [wu;wl]:

½wu;wl� ¼ UwRwV
�
w;

where Vw has dimension 2� 2

� TLS solution:

k1 ¼
�Vwð1; 2Þ
Vwð2; 2Þ

;

where we used the Matlab notation to denote the Vw

matrix elements.

Using TLS instead of LS, as above, we obtain a

variant of the KNOB-SVD method, called KNOB-TLS,

which has been used in Sections 3 and 4 for the simu-
lation and in vivo studies.

• Step 4. Removal of nuisance peaks prior to doublet

peak estimation

Before estimating the doublet peaks, we need to

eliminate the triplet peak from the data since, in the

theoretical development of the step dealing with the

doublet peaks, we assume that there is no other doublet

peak in the signal spectrum with the same damping and
frequency separation. This assumption would be vio-

lated if the triplet peak was not eliminated. Also, for the

noisy case, non-doublet peaks might disturb the esti-

mation of the doublet peaks and, therefore, we want to

eliminate those peaks as well. To eliminate the nuisance

components from the data matrix Y prior to the doublet

peak estimation, we use the same technique as for Step

2, but we replace K3 by K2 and we let �Y denote the
output matrix.

• Step 5. Damping and frequency estimation of the

doublet peaks

We consider the SVD of the matrix �Y provided by the

previous step

�Y ¼ �U�R�V�; ðA:23Þ
where �R ¼ diagð�r1; . . . ; �rK��mÞ, �U� �U ¼ IK��m and
�V� �V ¼ IK��m, and �m represents the number of elements in

K2. Let

�P ¼ I� �U�U�: ðA:24Þ
A procedure similar to (A.13)–(A.16) shows that for the

noise free case
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aMðk4Þ; aMðk6Þ 2 nullspaceð�CÞ; ðA:25Þ

where

�C ¼ �PþD �PD�; ðA:26Þ
with

dim½nullspaceð�CÞ� ¼ 2: ðA:27Þ
Let fw1;w2g denote the M � 1 vectors that span the null

space of �C. In view of (A.25), we have that

aMðk4Þ aMðk6Þ
h i

¼ WP; ðA:28Þ

where P is a 2� 2 non-singular matrix and

W ¼ w1 w2

h i
: ðA:29Þ

We define

Wu ¼ ½ IM�1 0 �W; ðA:30Þ

Wl ¼ ½ 0 IM�1 �W: ðA:31Þ
Then, it follows from (A.28) that

WlP ¼ WuP
k4 0

0 k6

� �
() Wl ¼ WuW; ðA:32Þ

where

W ¼ P
k4 0

0 k6

� �
P�1: ðA:33Þ

We can obtain W from (A.32) as follows:

W ¼ ðW�
uWuÞ�1

W�
uWl; ðA:34Þ

and, then, obtain k4 and k6 as the eigenvalues ofW. As in

Step 3, we can solve Eq. (A.32) in the TLS sense:

� arrange the matrices Wl and Wu in a new matrix:

½Wu;Wl�;
� compute the SVD of the matrix [Wu;Wl]:

½Wu;Wl� ¼ UWRWV
�
W;

where VW has dimension 4� 4,

� TLS solution:

W ¼ �VWð1 : 2; 3 : 4ÞðVWð3 : 4; 3 : 4ÞÞ�1
;

where we used the Matlab notation to denote the VW

matrix blocks.

For noisy datawe compute thematrix �Umade from the

maxfK � �m; 4g left singular vectors of �Y associated with

the largest singular values. The vectors fw1;w2g are the

eigenvectors of the matrix �C associated with the smallest
eigenvalues. We use the estimates of k4 and k6 along with
(2.4) to estimate k5 ¼ k4ej2pDfDt and k7 ¼ k6ej2pDfDt.
• Step 6. Elimination of the estimated multiplet peaks

As already specified, the signal we are considering

may contain other peaks besides the seven ATP peaks

(the triplet and two doublets) we have already estimated.

In order to improve the estimation of the remaining

K � 7 peaks, we eliminate the 7 estimated peaks from
the original data matrix Y and re-estimate the parame-
ters of the remaining peaks.

Once again we apply the same technique used in Step

2 by replacing K3 with

Kknown ¼ fk1; . . . ; k7g ðA:35Þ
and denoting the output data matrix as YK�7.

• Step 7. Damping and frequency estimation of the

remaining K � 7 peaks

Similarly to Step 1, we apply a standard HSVD/

HTLS method to the K � 7 dominant left singular vec-

tors of the data matrix YK�7 to re-estimate fk8; . . . ; kKg.
• Step 8. Amplitude estimation

Once the signal poles fkkgKk¼1 have been estimated, we
can compute the amplitude estimates. Let

y ¼ y0 � � � yN�1

h iT
ðA:36Þ

denote the data vector.

By using the amplitude and phase constraints (2.5) into

the model equation, we obtain (in the noise-free case)

y ¼ aN ðk1Þ . . . aN ðkKÞ
� � a1ej/1

..

.

aKej/K

2
664

3
775

¼ 1

2
aN ðk1Þ

��
þ aN ðk2Þ þ

1

2
aN ðk3Þ þ aN ðk4Þ þ � � �

þ aN ðk7Þ
�
; aNðk8Þ; . . . ; aN ðkKÞ

� aej/

a8ej/8

..

.

aKej/K

2
66664

3
77775,AH:

ðA:37Þ

From the least-squares estimate of H above

H ¼ ðA�AÞ�1
A�y; ðA:38Þ

we directly obtain the estimates for the amplitudes

fakgKk¼1 and phases f/kg
K
k¼1.
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